3x^2+19x^2=141

Simple and best practice solution for 3x^2+19x^2=141 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+19x^2=141 equation:



3x^2+19x^2=141
We move all terms to the left:
3x^2+19x^2-(141)=0
We add all the numbers together, and all the variables
22x^2-141=0
a = 22; b = 0; c = -141;
Δ = b2-4ac
Δ = 02-4·22·(-141)
Δ = 12408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12408}=\sqrt{4*3102}=\sqrt{4}*\sqrt{3102}=2\sqrt{3102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3102}}{2*22}=\frac{0-2\sqrt{3102}}{44} =-\frac{2\sqrt{3102}}{44} =-\frac{\sqrt{3102}}{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3102}}{2*22}=\frac{0+2\sqrt{3102}}{44} =\frac{2\sqrt{3102}}{44} =\frac{\sqrt{3102}}{22} $

See similar equations:

| -4($2+x)=-$28 | | P(x)=500-0.5x | | 9^3-3x=1/243 | | Y=36x^2+15x-6 | | 10x^2+9x+11=5 | | 3x-5(x-5)=-9+2x+14 | | 4x+125=225 | | 3x+10=109 | | y+4/5=0 | | 5-(w+7)=-4w-9 | | a+22=-86 | | 87+p=102 | | 3t+29=102 | | 41=5x | | 5*7^2y=175 | | -3-5x=-53 | | (3x-8)(x+4)= | | 6x-1=95 | | -2(x-5)=7=3(2x-9)-12 | | 0=6x^2-14x-40x | | 4x+4=224 | | 35x+15=225 | | 5h-9=7+5h | | 3x+10=-890 | | -2d-10=-10-2d | | 2/3a+2=1/3•(4a+1) | | 5(2x-7)+2=-1 | | 5*x+10*(30-x)=230 | | 9+2x=59 | | -3s=6s-9s | | -15x-16=-61 | | -7v-2=-2-7v |

Equations solver categories